Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cochrane Database Syst Rev ; 6: CD013881, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20235999

ABSTRACT

BACKGROUND: It has been reported that people with COVID-19 and pre-existing autoantibodies against type I interferons are likely to develop an inflammatory cytokine storm responsible for severe respiratory symptoms. Since interleukin 6 (IL-6) is one of the cytokines released during this inflammatory process, IL-6 blocking agents have been used for treating people with severe COVID-19. OBJECTIVES: To update the evidence on the effectiveness and safety of IL-6 blocking agents compared to standard care alone or to a placebo for people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) International Clinical Trials Registry Platform, the Living OVerview of Evidence (L·OVE) platform, and the Cochrane COVID-19 Study Register to identify studies on 7 June 2022. SELECTION CRITERIA: We included randomized controlled trials (RCTs) evaluating IL-6 blocking agents compared to standard care alone or to placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: Pairs of researchers independently conducted study selection, extracted data and assessed risk of bias. We assessed the certainty of evidence using the GRADE approach for all critical and important outcomes. In this update we amended our protocol to update the methods used for grading evidence by establishing minimal important differences for the critical outcomes. MAIN RESULTS: This update includes 22 additional trials, for a total of 32 trials including 12,160 randomized participants all hospitalized for COVID-19 disease. We identified a further 17 registered RCTs evaluating IL-6 blocking agents without results available as of 7 June 2022.  The mean age range varied from 56 to 75 years; 66.2% (8051/12,160) of enrolled participants were men. One-third (11/32) of included trials were placebo-controlled. Twenty-two were published in peer-reviewed journals, three were reported as preprints, two trials had results posted only on registries, and results from five trials were retrieved from another meta-analysis. Eight were funded by pharmaceutical companies.  Twenty-six included studies were multicenter trials; four were multinational and 22 took place in single countries. Recruitment of participants occurred between February 2020 and June 2021, with a mean enrollment duration of 21 weeks (range 1 to 54 weeks). Nineteen trials (60%) had a follow-up of 60 days or more. Disease severity ranged from mild to critical disease. The proportion of participants who were intubated at study inclusion also varied from 5% to 95%. Only six trials reported vaccination status; there were no vaccinated participants included in these trials, and 17 trials were conducted before vaccination was rolled out. We assessed a total of six treatments, each compared to placebo or standard care. Twenty trials assessed tocilizumab, nine assessed sarilumab, and two assessed clazakizumab. Only one trial was included for each of the other IL-6 blocking agents (siltuximab, olokizumab, and levilimab). Two trials assessed more than one treatment. Efficacy and safety of tocilizumab and sarilumab compared to standard care or placebo for treating COVID-19 At day (D) 28, tocilizumab and sarilumab probably result in little or no increase in clinical improvement (tocilizumab: risk ratio (RR) 1.05, 95% confidence interval (CI) 1.00 to 1.11; 15 RCTs, 6116 participants; moderate-certainty evidence; sarilumab: RR 0.99, 95% CI 0.94 to 1.05; 7 RCTs, 2425 participants; moderate-certainty evidence). For clinical improvement at ≥ D60, the certainty of evidence is very low for both tocilizumab (RR 1.10, 95% CI 0.81 to 1.48; 1 RCT, 97 participants; very low-certainty evidence) and sarilumab (RR 1.22, 95% CI 0.91 to 1.63; 2 RCTs, 239 participants; very low-certainty evidence). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score (WHO-CPS) of level 7 or above remains uncertain at D28 (RR 0.90, 95% CI 0.72 to 1.12; 13 RCTs, 2117 participants; low-certainty evidence) and that for sarilumab very uncertain (RR 1.10, 95% CI 0.90 to 1.33; 5 RCTs, 886 participants; very low-certainty evidence). Tocilizumab reduces all cause-mortality at D28 compared to standard care/placebo (RR 0.88, 95% CI 0.81 to 0.94; 18 RCTs, 7428 participants; high-certainty evidence). The evidence about the effect of sarilumab on this outcome is very uncertain (RR 1.06, 95% CI 0.86 to 1.30; 9 RCTs, 3305 participants; very low-certainty evidence). The evidence is uncertain for all cause-mortality at ≥ D60 for tocilizumab (RR 0.91, 95% CI 0.80 to 1.04; 9 RCTs, 2775 participants; low-certainty evidence) and very uncertain for sarilumab (RR 0.95, 95% CI 0.84 to 1.07; 6 RCTs, 3379 participants; very low-certainty evidence). Tocilizumab probably results in little to no difference in the risk of adverse events (RR 1.03, 95% CI 0.95 to 1.12; 9 RCTs, 1811 participants; moderate-certainty evidence). The evidence about adverse events for sarilumab is uncertain (RR 1.12, 95% CI 0.97 to 1.28; 4 RCT, 860 participants; low-certainty evidence).  The evidence about serious adverse events is very uncertain for tocilizumab (RR 0.93, 95% CI 0.81 to 1.07; 16 RCTs; 2974 participants; very low-certainty evidence) and uncertain for sarilumab (RR 1.09, 95% CI 0.97 to 1.21; 6 RCTs; 2936 participants; low-certainty evidence). Efficacy and safety of clazakizumab, olokizumab, siltuximab and levilimab compared to standard care or placebo for treating COVID-19 The evidence about the effects of clazakizumab, olokizumab, siltuximab, and levilimab comes from only one or two studies for each blocking agent, and is uncertain or very uncertain. AUTHORS' CONCLUSIONS: In hospitalized people with COVID-19, results show a beneficial effect of tocilizumab on all-cause mortality in the short term and probably little or no difference in the risk of adverse events compared to standard care alone or placebo. Nevertheless, both tocilizumab and sarilumab probably result in little or no increase in clinical improvement at D28. Evidence for an effect of sarilumab and the other IL-6 blocking agents on critical outcomes is uncertain or very uncertain. Most of the trials included in our review were done before the waves of different variants of concern and before vaccination was rolled out on a large scale. An additional 17 RCTs of IL-6 blocking agents are currently registered with no results yet reported. The number of pending studies and the number of participants planned is low. Consequently, we will not publish further updates of this review.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Interleukin-6 , Aged , Female , Humans , Male , Middle Aged , Bias , Cytokines , Interleukin-6/antagonists & inhibitors
2.
Cochrane Database Syst Rev ; 12: CD015477, 2022 Dec 07.
Article in English | MEDLINE | ID: covidwho-2261173

ABSTRACT

BACKGROUND: Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally.  OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes.  We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs).  MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available.  This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS: Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.

3.
Infect Control Hosp Epidemiol ; 42(1): 75-83, 2021 01.
Article in English | MEDLINE | ID: covidwho-2096434

ABSTRACT

BACKGROUND: Shortages of personal protective equipment during the coronavirus disease 2019 (COVID-19) pandemic have led to the extended use or reuse of single-use respirators and surgical masks by frontline healthcare workers. The evidence base underpinning such practices warrants examination. OBJECTIVES: To synthesize current guidance and systematic review evidence on extended use, reuse, or reprocessing of single-use surgical masks or filtering face-piece respirators. DATA SOURCES: We used the World Health Organization, the European Centre for Disease Prevention and Control, the US Centers for Disease Control and Prevention, and Public Health England websites to identify guidance. We used Medline, PubMed, Epistemonikos, Cochrane Database, and preprint servers for systematic reviews. METHODS: Two reviewers conducted screening and data extraction. The quality of included systematic reviews was appraised using AMSTAR-2. Findings were narratively synthesized. RESULTS: In total, 6 guidance documents were identified. Levels of detail and consistency across documents varied. They included 4 high-quality systematic reviews: 3 focused on reprocessing (decontamination) of N95 respirators and 1 focused on reprocessing of surgical masks. Vaporized hydrogen peroxide and ultraviolet germicidal irradiation were highlighted as the most promising reprocessing methods, but evidence on the relative efficacy and safety of different methods was limited. We found no well-established methods for reprocessing respirators at scale. CONCLUSIONS: Evidence on the impact of extended use and reuse of surgical masks and respirators is limited, and gaps and inconsistencies exist in current guidance. Where extended use or reuse is being practiced, healthcare organizations should ensure that policies and systems are in place to ensure these practices are carried out safely and in line with available guidance.


Subject(s)
COVID-19 , Equipment Reuse/standards , Infection Control/instrumentation , Masks/virology , N95 Respirators/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Infection Control/methods , Practice Guidelines as Topic , Risk Management/methods , Risk Management/standards
4.
J Clin Epidemiol ; 151: 151-160, 2022 Aug 28.
Article in English | MEDLINE | ID: covidwho-2041909

ABSTRACT

OBJECTIVES: A rapid review is a form of evidence synthesis considered a resource-efficient alternative to the conventional systematic review. Despite a dramatic rise in the number of rapid reviews commissioned and conducted in response to the coronavirus disease 2019 pandemic, published evidence on the optimal methods of planning, doing, and sharing the results of these reviews is lacking. The Priority III study aimed to identify the top 10 unanswered questions on rapid review methodology to be addressed by future research. STUDY DESIGN AND SETTING: A modified James Lind Alliance Priority Setting Partnership approach was adopted. This approach used two online surveys and a virtual prioritization workshop with patients and the public, reviewers, researchers, clinicians, policymakers, and funders to identify and prioritize unanswered questions. RESULTS: Patients and the public, researchers, reviewers, clinicians, policymakers, and funders identified and prioritized the top 10 unanswered research questions about rapid review methodology. Priorities were identified throughout the entire review process, from stakeholder involvement and formulating the question, to the methods of a systematic review that are appropriate to use, through to the dissemination of results. CONCLUSION: The results of the Priority III study will inform the future research agenda on rapid review methodology. We hope this will enhance the quality of evidence produced by rapid reviews, which will ultimately inform decision-making in the context of healthcare.

6.
Cochrane Database Syst Rev ; 1: CD015308, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1653145

ABSTRACT

BACKGROUND: Interleukin-1 (IL-1) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19), on the premise that their immunomodulatory effect might be beneficial in people with COVID-19. OBJECTIVES: To assess the effects of IL-1 blocking agents compared with standard care alone or with placebo on effectiveness and safety outcomes in people with COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L-OVE Platform (search date 5 November 2021). These sources are maintained through regular searches of MEDLINE, Embase, CENTRAL, trial registers and other sources. We also checked the World Health Organization International Clinical Trials Registry Platform, regulatory agency websites, Retraction Watch (search date 3 November 2021). SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-1 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two researchers independently screened and extracted data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence using the GRADE approach for the critical outcomes of clinical improvement (Day 28; ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28; ≥ D60); all-cause mortality (D28; ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified four RCTs of anakinra (three published in peer-reviewed journals, one reported as a preprint) and two RCTs of canakinumab (published in peer-reviewed journals). All trials were multicentre (2 to 133 centres). Two trials stopped early (one due to futility and one as the trigger for inferiority was met). The median/mean age range varied from 58 to 68 years; the proportion of men varied from 58% to 77%. All participants were hospitalised; 67% to 100% were on oxygen at baseline but not intubated; between 0% and 33% were intubated at baseline. We identified a further 16 registered trials with no results available, of which 15 assessed anakinra (four completed, four terminated, five ongoing, three not recruiting) and one (completed) trial assessed canakinumab. Effectiveness of anakinra for people with COVID-19 Anakinra probably results in little or no increase in clinical improvement at D28 (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.97 to 1.20; 3 RCTs, 837 participants; absolute effect: 59 more per 1000 (from 22 fewer to 147 more); moderate-certainty evidence. The evidence is uncertain about an effect of anakinra on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.67, 95% CI 0.36 to 1.22; 2 RCTs, 722 participants; absolute effect: 55 fewer per 1000 (from 107 fewer to 37 more); low-certainty evidence) and ≥ D60 (RR 0.54, 95% CI 0.30 to 0.96; 1 RCT, 606 participants; absolute effect: 47 fewer per 1000 (from 72 fewer to 4 fewer) low-certainty evidence); and 2) all-cause mortality at D28 (RR 0.69, 95% CI 0.34 to 1.39; 2 RCTs, 722 participants; absolute effect: 32 fewer per 1000 (from 68 fewer to 40 more); low-certainty evidence).  The evidence is very uncertain about an effect of anakinra on 1) the proportion of participants with clinical improvement at ≥ D60 (RR 0.93, 95% CI 0.78 to 1.12; 1 RCT, 115 participants; absolute effect: 59 fewer per 1000 (from 186 fewer to 102 more); very low-certainty evidence); and 2) all-cause mortality at ≥ D60 (RR 1.03, 95% CI 0.68 to 1.56; 4 RCTs, 1633 participants; absolute effect: 8 more per 1000 (from 84 fewer to 147 more); very low-certainty evidence). Safety of anakinra for people with COVID-19 Anakinra probably results in little or no increase in adverse events (RR 1.02, 95% CI 0.94 to 1.11; 2 RCTs, 722 participants; absolute effect: 14 more per 1000 (from 43 fewer to 78 more); moderate-certainty evidence).  The evidence is uncertain regarding an effect of anakinra on serious adverse events (RR 0.95, 95% CI 0.58 to 1.56; 2 RCTs, 722 participants; absolute effect: 12 fewer per 1000 (from 104 fewer to 138 more); low-certainty evidence). Effectiveness of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in clinical improvement at D28 (RR 1.05, 95% CI 0.96 to 1.14; 2 RCTs, 499 participants; absolute effect: 42 more per 1000 (from 33 fewer to 116 more); moderate-certainty evidence).  The evidence of an effect of canakinumab is uncertain on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.72, 95% CI 0.44 to 1.20; 2 RCTs, 499 participants; absolute effect: 35 fewer per 1000 (from 69 fewer to 25 more); low-certainty evidence); and 2) all-cause mortality at D28 (RR:0.75; 95% CI 0.39 to 1.42); 2 RCTs, 499 participants; absolute effect: 20 fewer per 1000 (from 48 fewer to 33 more); low-certainty evidence).  The evidence is very uncertain about an effect of canakinumab on all-cause mortality at ≥ D60 (RR 0.55, 95% CI 0.16 to 1.91; 1 RCT, 45 participants; absolute effect: 112 fewer per 1000 (from 210 fewer to 227 more); very low-certainty evidence). Safety of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in adverse events (RR 1.02; 95% CI 0.86 to 1.21; 1 RCT, 454 participants; absolute effect: 11 more per 1000 (from 74 fewer to 111 more); moderate-certainty evidence). The evidence of an effect of canakinumab on serious adverse events is uncertain (RR 0.80, 95% CI 0.57 to 1.13; 2 RCTs, 499 participants; absolute effect: 44 fewer per 1000 (from 94 fewer to 28 more); low-certainty evidence). AUTHORS' CONCLUSIONS: Overall, we did not find evidence for an important beneficial effect of IL-1 blocking agents. The evidence is uncertain or very uncertain for several outcomes. Sixteen trials of anakinra and canakinumab with no results are currently registered, of which four are completed, and four terminated. The findings of this review are updated on the COVID-NMA platform (covid-nma.com).


Subject(s)
COVID-19 Drug Treatment , Interleukin-1/antagonists & inhibitors , Aged , Female , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic , Respiration, Artificial
7.
Cochrane Database Syst Rev ; 4: CD013582, 2020 04 21.
Article in English | MEDLINE | ID: covidwho-1372688

ABSTRACT

BACKGROUND: This review is one of a series of rapid reviews that Cochrane contributors have prepared to inform the 2020 COVID-19 pandemic. When new respiratory infectious diseases become widespread, such as during the COVID-19 pandemic, healthcare workers' adherence to infection prevention and control (IPC) guidelines becomes even more important. Strategies in these guidelines include the use of personal protective equipment (PPE) such as masks, face shields, gloves and gowns; the separation of patients with respiratory infections from others; and stricter cleaning routines. These strategies can be difficult and time-consuming to adhere to in practice. Authorities and healthcare facilities therefore need to consider how best to support healthcare workers to implement them. OBJECTIVES: To identify barriers and facilitators to healthcare workers' adherence to IPC guidelines for respiratory infectious diseases. SEARCH METHODS: We searched OVID MEDLINE on 26 March 2020. As we searched only one database due to time constraints, we also undertook a rigorous and comprehensive scoping exercise and search of the reference lists of key papers. We did not apply any date limit or language limits. SELECTION CRITERIA: We included qualitative and mixed-methods studies (with a distinct qualitative component) that focused on the experiences and perceptions of healthcare workers towards factors that impact on their ability to adhere to IPC guidelines for respiratory infectious diseases. We included studies of any type of healthcare worker with responsibility for patient care. We included studies that focused on IPC guidelines (local, national or international) for respiratory infectious diseases in any healthcare setting. These selection criteria were framed by an understanding of the needs of health workers during the COVID-19 pandemic. DATA COLLECTION AND ANALYSIS: Four review authors independently assessed the titles, abstracts and full texts identified by our search. We used a prespecified sampling frame to sample from the eligible studies, aiming to capture a range of respiratory infectious disease types, geographical spread and data-rich studies. We extracted data using a data extraction form designed for this synthesis. We assessed methodological limitations using an adapted version of the Critical Skills Appraisal Programme (CASP) tool. We used a 'best fit framework approach' to analyse and synthesise the evidence. This provided upfront analytical categories, with scope for further thematic analysis. We used the GRADE-CERQual (Confidence in the Evidence from Reviews of Qualitative research) approach to assess our confidence in each finding. We examined each review finding to identify factors that may influence intervention implementation and developed implications for practice. MAIN RESULTS: We found 36 relevant studies and sampled 20 of these studies for our analysis. Ten of these studies were from Asia, four from Africa, four from Central and North America and two from Australia. The studies explored the views and experiences of nurses, doctors and other healthcare workers when dealing with severe acute respiratory syndrome (SARS), H1N1, MERS (Middle East respiratory syndrome), tuberculosis (TB), or seasonal influenza. Most of these healthcare workers worked in hospitals; others worked in primary and community care settings. Our review points to several barriers and facilitators that influenced healthcare workers' ability to adhere to IPC guidelines. The following factors are based on findings assessed as of moderate to high confidence. Healthcare workers felt unsure as to how to adhere to local guidelines when they were long and ambiguous or did not reflect national or international guidelines. They could feel overwhelmed because local guidelines were constantly changing. They also described how IPC strategies led to increased workloads and fatigue, for instance because they had to use PPE and take on additional cleaning. Healthcare workers described how their responses to IPC guidelines were influenced by the level of support they felt that they received from their management team. Clear communication about IPC guidelines was seen as vital. But healthcare workers pointed to a lack of training about the infection itself and about how to use PPE. They also thought it was a problem when training was not mandatory. Sufficient space to isolate patients was also seen as vital. A lack of isolation rooms, anterooms and shower facilities was a problem. Other important practical measures described by healthcare workers included minimising overcrowding, fast-tracking infected patients, restricting visitors, and providing easy access to handwashing facilities. A lack of PPE, and equipment that was of poor quality, was a serious concern for healthcare workers and managers. They also pointed to the need to adjust the volume of supplies as infection outbreaks continued. Healthcare workers believed that they followed IPC guidance more closely when they saw the value of it. Some healthcare workers felt motivated to follow the guidance because of fear of infecting themselves or their families, or because they felt responsible for their patients. Some healthcare workers found it difficult to use masks and other equipment when it made patients feel isolated, frightened or stigmatised. Healthcare workers also found masks and other equipment uncomfortable to use. The workplace culture could also influence whether healthcare workers followed IPC guidelines or not. Across many of the findings, healthcare workers pointed to the importance of including all staff, including cleaning staff, porters, kitchen staff and other support staff when implementing IPC guidelines. AUTHORS' CONCLUSIONS: Healthcare workers point to several factors that influence their ability and willingness to follow IPC guidelines when managing respiratory infectious diseases. These include factors tied to the guideline itself and how it is communicated, support from managers, workplace culture, training, physical space, access to and trust in personal protective equipment, and a desire to deliver good patient care. The review also highlights the importance of including all facility staff, including support staff, when implementing IPC guidelines.


Subject(s)
Coronavirus Infections , Cross Infection/prevention & control , Guideline Adherence , Health Personnel , Infection Control , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Guideline Adherence/standards , Health Knowledge, Attitudes, Practice , Humans , Pandemics/prevention & control , Patient Isolation , Personal Protective Equipment , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Practice Guidelines as Topic , Universal Precautions
8.
HRB Open Res ; 3: 81, 2020.
Article in English | MEDLINE | ID: covidwho-1248414

ABSTRACT

On the 11 th of March 2020, the World Health Organisation (WHO) declared a global pandemic due to the SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19). This was one month after Dr. Tedros Adhanom Ghebreyesus, Director-General of the WHO declared that we are also fighting an 'infodemic'. The WHO has described an infodemic as an "over-abundance of information - some accurate and some not - that makes it hard for people to find trustworthy sources and reliable guidance when they need it". iHealthFacts.ie is an Irish resource where the public can quickly and easily check the credibility and reliability of health claims circulating on social media. Unreliable claims can lead to poorly informed health choices. iHealthFacts is an initiative that supports the public to think critically about health claims and make well-informed choices. Here, we describe the role iHealthFacts plays in providing reliable information to the public and offer reflections from those involved in launching this initiative during a pandemic.

9.
Cochrane Database Syst Rev ; 3: CD013881, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1139209

ABSTRACT

BACKGROUND: Interleukin 6 (IL-6) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19). Their immunosuppressive effect might be valuable in patients with COVID-19 characterised by substantial immune system dysfunction by controlling inflammation and promoting disease tolerance. OBJECTIVES: To assess the effect of IL-6 blocking agents compared to standard care alone or with placebo on efficacy and safety outcomes in COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the World Health Organization (WHO) International Clinical Trials Registry Platform (up to 11 February 2021) and the L-OVE platform, and Cochrane COVID-19 Study Register to identify trials up to 26 February 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-6 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two review authors independently collected data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence with the GRADE approach for the critical outcomes such as clinical improvement (defined as hospital discharge or improvement on the scale used by trialists to evaluate clinical progression or recovery) (day (D) 28 / ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28 / ≥ D60); all-cause mortality (D28 / ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified 10 RCTs with available data including one platform trial comparing tocilizumab and sarilumab with standard of care. These trials evaluated tocilizumab (nine RCTs including two platform trials; seven were reported as peer-reviewed articles, two as preprints; 6428 randomised participants); and two sarilumab (one platform trial reported as peer reviewed article, one reported as preprint, 880 randomised participants). All trials included were multicentre trials. They were conducted in Brazil, China, France, Italy, UK, USA, and four were multi-country trials. The mean age range of participants ranged from 56 to 65 years; 4572 (66.3%) of trial participants were male. Disease severity ranged from mild to critical disease. The reported proportion of participants on oxygen at baseline but not intubated varied from 56% to 100% where reported. Five trials reported the inclusion of intubated patients at baseline. We identified a further 20 registered RCTs of tocilizumab compared to placebo/standard care (five completed without available results, five terminated without available results, eight ongoing, two not recruiting); 11 RCTs of sarilumab (two completed without results, three terminated without available results, six ongoing); six RCTs of clazakisumab (five ongoing, one not recruiting); two RCTs of olokizumab (one completed, one not recruiting); one of siltuximab (ongoing) and one RCT of levilimab (completed without available results). Of note, three were cancelled (2 tocilizumab, 1 clazakisumab). One multiple-arm RCT evaluated both tocilizumab and sarilumab compared to standard of care, one three-arm RCT evaluated tocilizumab and siltuximab compared to standard of care and consequently they appear in each respective comparison. Tocilizumab versus standard care alone or with placebo a. Effectiveness of tocilizumab for patients with COVID-19 Tocilizumab probably results in little or no increase in the outcome of clinical improvement at D28 (RR 1.06, 95% CI 1.00 to 1.13; I2 = 40.9%; 7 RCTs, 5585 participants; absolute effect: 31 more with clinical improvement per 1000 (from 0 fewer to 67 more); moderate-certainty evidence). However, we cannot exclude that some subgroups of patients could benefit from the treatment. We did not obtain data for longer-term follow-up (≥ D60). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score of level of 7 or above is uncertain at D28 (RR 0.99, 95% CI 0.56 to 1.74; I2 = 64.4%; 3 RCTs, 712 participants; low-certainty evidence). We did not obtain data for longer-term follow-up (≥ D60). Tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo (RR 0.89, 95% CI 0.82 to 0.97; I2 = 0.0%; 8 RCTs, 6363 participants; absolute effect: 32 fewer deaths per 1000 (from 52 fewer to 9 fewer); high-certainty evidence). The evidence suggests uncertainty around the effect on mortality at ≥ D60 (RR 0.86, 95% CI 0.53 to 1.40; I2 = 0.0%; 2 RCTs, 519 participants; low-certainty evidence). b. Safety of tocilizumab for patients with COVID-19 The evidence is very uncertain about the effect of tocilizumab on adverse events (RR 1.23, 95% CI 0.87 to 1.72; I2 = 86.4%; 7 RCTs, 1534 participants; very low-certainty evidence). Nevertheless, tocilizumab probably results in slightly fewer serious adverse events than standard care alone or placebo (RR 0.89, 95% CI 0.75 to 1.06; I2 = 0.0%; 8 RCTs, 2312 participants; moderate-certainty evidence). Sarilumab versus standard care alone or with placebo The evidence is uncertain about the effect of sarilumab on all-cause mortality at D28 (RR 0.77, 95% CI 0.43 to 1.36; 2 RCTs, 880 participants; low certainty), on all-cause mortality at ≥ D60 (RR 1.00, 95% CI 0.50 to 2.0; 1 RCT, 420 participants; low certainty), and serious adverse events (RR 1.17, 95% CI 0.77 to 1.77; 2 RCTs, 880 participants; low certainty). It is unlikely that sarilumab results in an important increase of adverse events (RR 1.05, 95% CI 0.88 to 1.25; 1 RCT, 420 participants; moderate certainty). However, an increase cannot be excluded No data were available for other critical outcomes. AUTHORS' CONCLUSIONS: On average, tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo and probably results in slightly fewer serious adverse events than standard care alone or placebo. Nevertheless, tocilizumab probably results in little or no increase in the outcome clinical improvement (defined as hospital discharge or improvement measured by trialist-defined scales) at D28. The impact of tocilizumab on other outcomes is uncertain or very uncertain. With the data available, we were not able to explore heterogeneity. Individual patient data meta-analyses are needed to be able to identify which patients are more likely to benefit from this treatment. Evidence for an effect of sarilumab is uncertain and evidence for other anti-IL6 agents is unavailable. Thirty-nine RCTs of IL-6 blocking agents with no results are currently registered, of which nine are completed and seven trials were terminated with no results available. The findings of this review will be updated as new data are made available on the COVID-NMA platform (covid-nma.com).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Interleukin-6/antagonists & inhibitors , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Bias , COVID-19/mortality , Disease Progression , Female , Humans , Male , Middle Aged , Multicenter Studies as Topic , Randomized Controlled Trials as Topic
10.
Cochrane Database Syst Rev ; 12: CD013819, 2020 12 21.
Article in English | MEDLINE | ID: covidwho-1030105

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the strain of coronavirus that causes coronavirus disease 2019 (COVID-19) can cause serious illness in some people resulting in admission to intensive care units (ICU) and frequently, ventilatory support for acute respiratory failure. Evaluating ICU care, and what is effective in improving outcomes for these patients is critical. Care bundles, a small set of evidence-based interventions, delivered together consistently, may improve patient outcomes. To identify the extent of the available evidence on the use of care bundles in patients with COVID-19 in the ICU, the World Health Organization (WHO) commissioned a scoping review to inform WHO guideline discussions. This review does not assess the effectiveness of the findings, assess risk of bias, or assess the certainty of the evidence (GRADE). As this review was commissioned to inform guideline discussions, it was done rapidly over a three-week period from 26 October to 18 November 2020. OBJECTIVES: To identify and describe the available evidence on the use of care bundles in the ICU for patients with COVID-19 or related conditions (acute respiratory distress syndrome (ARDS) viral pneumonia or pneumonitis), or both. In carrying out the review the focus was on characterising the evidence base and not evaluating the effectiveness or safety of the care bundles or their component parts. SEARCH METHODS: We searched MEDLINE, Embase, the Cochrane Library (CENTRAL and the Cochrane COVID-19 Study Register) and the WHO International Clinical Trials Registry Platform on 26 October 2020. SELECTION CRITERIA: Studies of all designs that reported on patients who are critically ill with COVID-19, ARDS, viral pneumonia or pneumonitis, in the ICU setting, where a care bundle was implemented in providing care, were eligible for inclusion. One review author (VS) screened all records on title and abstract. A second review author (DR) checked 20% of excluded and included records; agreement was 99.4% and 100% respectively on exclude/include decisions. Two review authors (VS and DR) independently screened all records at full-text level. VS and DR resolved any disagreements through discussion and consensus, or referral to a third review author (AN) as required. DATA COLLECTION AND ANALYSIS: One review author (VS) extracted the data and a second review author (DR) checked 20% of this for accuracy. As the review was not designed to synthesise effectiveness data, assess risk of bias, or characterise the certainty of the evidence (GRADE), we mapped the extracted data and presented them in tabular format based on the patient condition; that is patients with confirmed or suspected COVID-19, patients with ARDS, patients with any influenza or viral pneumonia, patients with severe respiratory failure, and patients with mixed conditions. We have also provided a narrative summary of the findings from the included studies. MAIN RESULTS: We included 21 studies and identified three ongoing studies. The studies were of variable designs and included a systematic review of standardised approaches to caring for critically ill patients in ICU, including but not exclusive to care bundles (1 study), a randomised trial (1 study), prospective and retrospective cohort studies (4 studies), before and after studies (7 studies), observational quality improvement reports (4 studies), case series/case reports (3 studies) and audit (1 study). The studies were conducted in eight countries, most commonly China (5 studies) and the USA (4 studies), were published between 1999 and 2020, and involved over 2000 participants in total. Studies categorised participant conditions patients with confirmed or suspected COVID-19 (7 studies), patients with ARDS (7 studies), patients with another influenza or viral pneumonia (5 studies), patients with severe respiratory failure (1 study), and patients with mixed conditions (1 study). The care bundles described in the studies involved multiple diverse practices. Guidance on ventilator settings (10 studies), restrictive fluid management (8 studies), sedation (7 studies) and prone positioning (7 studies) were identified most frequently, while only one study mentioned chest X-ray. None of the included studies reported the prespecified outcomes ICU-acquired weakness (muscle wasting, weight loss) and users' experience adapting care bundles. Of the remaining prespecified outcomes, 14 studies reported death in ICU, nine reported days of ventilation (or ventilator-free days), nine reported length of stay in ICU in days, five reported death in hospital, three reported length of stay in hospital in days, and three reported adherence to the bundle. AUTHORS' CONCLUSIONS: This scoping review has identified 21 studies on care bundle use in critically ill patients in ICU with COVID-19, ARDS, viral influenza or pneumonia and severe respiratory failure. The data for patients with COVID-19 specifically are limited, derived mainly from observational quality improvement or clinical experiential accounts. Research is required, urgently, to further assess care bundle use and optimal components of these bundles in this patient cohort. The care bundles described were also varied, with guidance on ventilator settings described in 10 care bundles, while chest X-ray was part mentioned in one care bundle in one study only. None of the studies identified in this scoping review measured users' experience of adapting care bundles. Optimising care bundle implementation requires that the components of the care bundle are collectively and consistently applied. Data on challenges, barriers and facilitators to implementation are needed. A formal synthesis of the outcome data presented in this review and a critical appraisal of the evidence is required by a subsequent effectiveness review. This subsequent review should further explore effect estimates across the included studies.


Subject(s)
COVID-19/therapy , Critical Care , Patient Care Bundles/methods , SARS-CoV-2 , COVID-19/complications , COVID-19/epidemiology , Humans , Influenza, Human/therapy , Intensive Care Units , Pandemics , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Treatment Outcome
12.
Syst Rev ; 9(1): 256, 2020 11 04.
Article in English | MEDLINE | ID: covidwho-937144

ABSTRACT

BACKGROUND: The COVID-19 pandemic has created a sense of urgency in the research community in their bid to contribute to the evidence required for healthcare policy decisions. With such urgency, researchers experience methodological challenges to maintain the rigour and transparency of their work. With this in mind, we offer reflections on our recent experience of undertaking a rapid Cochrane qualitative evidence synthesis (QES). METHODS: This process paper, using a reflexive approach, describes a rapid QES prepared during, and in response to, the COVID-19 pandemic. FINDINGS: This paper reports the methodological decisions we made and the process we undertook. We place our decisions in the context of guidance offered in relation to rapid reviews and previously conducted QESs. We highlight some of the challenges we encountered in finding the balance between the time needed for thoughtfulness and comprehensiveness whilst providing a rapid response to an urgent request for evidence. CONCLUSION: The need for more guidance on rapid QES remains, but such guidance needs to be based on actual worked examples and case studies. This paper and the reflections offered may provide a useful framework for others to use and further develop.


Subject(s)
Coronavirus Infections , Decision Making , Evidence-Based Medicine , Pandemics , Pneumonia, Viral , Publishing , Research Design , Review Literature as Topic , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Data Accuracy , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Qualitative Research , SARS-CoV-2
14.
Cochrane Database Syst Rev ; 5: CD013632, 2020 05 21.
Article in English | MEDLINE | ID: covidwho-343019

ABSTRACT

BACKGROUND: The current COVID-19 pandemic has been identified as a possible trigger for increases in loneliness and social isolation among older people due to the restrictions on movement that many countries have put in place. Loneliness and social isolation are consistently identified as risk factors for poor mental and physical health in older people. Video calls may help older people stay connected during the current crisis by widening the participant's social circle or by increasing the frequency of contact with existing acquaintances. OBJECTIVES: The primary objective of this rapid review is to assess the effectiveness of video calls for reducing social isolation and loneliness in older adults. The review also sought to address the effectiveness of video calls on reducing symptoms of depression and improving quality of life. SEARCH METHODS: We searched CENTRAL, MEDLINE, PsycINFO and CINAHL from 1 January 2004 to 7 April 2020. We also searched the references of relevant systematic reviews. SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs (including cluster designs) were eligible for inclusion. We excluded all other study designs. The samples in included studies needed to have a mean age of at least 65 years. We included studies that included participants whether or not they were experiencing symptoms of loneliness or social isolation at baseline. Any intervention in which a core component involved the use of the internet to facilitate video calls or video conferencing through computers, smartphones or tablets with the intention of reducing loneliness or social isolation, or both, in older adults was eligible for inclusion. We included studies in the review if they reported self-report measures of loneliness, social isolation, symptoms of depression or quality of life.  Two review authors screened 25% of abstracts; a third review author resolved conflicts. A single review author screened the remaining abstracts. The second review author screened all excluded abstracts and we resolved conflicts by consensus or by involving a third review author. We followed the same process for full-text articles. DATA COLLECTION AND ANALYSIS: One review author extracted data, which another review author checked. The primary outcomes were loneliness and social isolation and the secondary outcomes were symptoms of depression and quality of life. One review author rated the certainty of evidence for the primary outcomes according to the GRADE approach and another review author checked the ratings. We conducted fixed-effect meta-analyses for the primary outcome, loneliness, and the secondary outcome, symptoms of depression. MAIN RESULTS: We identified three cluster quasi-randomised trials, which together included 201 participants. The included studies compared video call interventions to usual care in nursing homes. None of these studies were conducted during the COVID-19 pandemic.  Each study measured loneliness using the UCLA Loneliness Scale. Total scores range from 20 (least lonely) to 80 (most lonely). The evidence was very uncertain and suggests that video calls may result in little to no difference in scores on the UCLA Loneliness Scale compared to usual care at three months (mean difference (MD) -0.44, 95% confidence interval (CI) -3.28 to 2.41; 3 studies; 201 participants), at six months (MD -0.34, 95% CI -3.41 to 2.72; 2 studies; 152 participants) and at 12 months (MD -2.40, 95% CI -7.20 to 2.40; 1 study; 90 participants). We downgraded the certainty of this evidence by three levels for study limitations, imprecision and indirectness. None of the included studies reported social isolation as an outcome. Each study measured symptoms of depression using the Geriatric Depression Scale. Total scores range from 0 (better) to 30 (worse). The evidence was very uncertain and suggests that video calls may result in little to no difference in scores on the Geriatric Depression Scale compared to usual care at three months' follow-up (MD 0.41, 95% CI -0.90 to 1.72; 3 studies; 201 participants) or six months' follow-up (MD -0.83, 95% CI -2.43 to 0.76; 2 studies, 152 participants). The evidence suggests that video calls may have a small effect on symptoms of depression at one-year follow-up, though this finding is imprecise (MD -2.04, 95% CI -3.98 to -0.10; 1 study; 90 participants). We downgraded the certainty of this evidence by three levels for study limitations, imprecision and indirectness. Only one study, with 62 participants, reported quality of life. The study measured quality of life using a Taiwanese adaptation of the Short-Form 36-question health survey (SF-36), which consists of eight subscales that measure different aspects of quality of life: physical function; physical role; emotional role; social function; pain: vitality; mental health; and physical health. Each subscale is scored from 0 (poor health) to 100 (good health). The evidence is very uncertain and suggests that there may be little to no difference between people allocated to usual care and those allocated to video calls in three-month scores in physical function (MD 2.88, 95% CI -5.01 to 10.77), physical role (MD -7.66, 95% CI -24.08 to 8.76), emotional role (MD -7.18, 95% CI -16.23 to 1.87), social function (MD 2.77, 95% CI -8.87 to 14.41), pain scores (MD -3.25, 95% CI -15.11 to 8.61), vitality scores (MD -3.60, 95% CI -9.01 to 1.81), mental health (MD 9.19, 95% CI 0.36 to 18.02) and physical health (MD 5.16, 95% CI -2.48 to 12.80). We downgraded the certainty of this evidence by three levels for study limitations, imprecision and indirectness. AUTHORS' CONCLUSIONS: Based on this review there is currently very uncertain evidence on the effectiveness of video call interventions to reduce loneliness in older adults. The review did not include any studies that reported evidence of the effectiveness of video call interventions to address social isolation in older adults. The evidence regarding the effectiveness of video calls for outcomes of symptoms of depression was very uncertain. Future research in this area needs to use more rigorous methods and more diverse and representative participants. Specifically, future studies should target older adults, who are demonstrably lonely or socially isolated, or both, across a range of settings to determine whether video call interventions are effective in a population in which these outcomes are in need of improvement.


Subject(s)
Betacoronavirus , Coronavirus Infections , Loneliness/psychology , Online Social Networking , Pandemics , Pneumonia, Viral , Social Isolation/psychology , Aged , COVID-19 , Coronavirus Infections/epidemiology , Depression/diagnosis , Homes for the Aged , Humans , Nursing Homes , Pneumonia, Viral/epidemiology , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Social Control, Informal/methods
SELECTION OF CITATIONS
SEARCH DETAIL